
 
Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025  1 Page 

Tikrit Journal of Engineering Sciences (2025); 32 (Sp1): 2737 
 

DOI: http://doi.org/10.25130/tjes.sp1.2025.10

 

 

Application of Deep Learning and IoT for Detection of 
Diabetic Retinopathy and Diabetic Macular Edema   
Sanjaya Kumar Jena a, Debahuti Mishra a, Binod Kumar Pattanayak *a,  
Pravat Kumar Rautaray a, Bibhuti Bhusan Dash b 
a Department of Computer Science & Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan, Deemed to be University, 

Bhubaneswar, Odisha, India. 
b School of Computer Application, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India. 

Keywords: 
Diabetic Retinopathy (DR); Internet of Things (IoT); Convolutional 

Neural Networks (CNN); Diabetic Macular Edema (DME). 

Highlights: 

• IoT-based Deep Learning for DR and DME detection. 

• Proposed Multi-Level Feature Extraction and Classification (ML-

FEC) deep learning architecture. 

• ML-FEC achieved 98.86% accuracy for DME and 86.04% for DR. 

• Homomorphic Encryption used to secure medical 

images/diagnosis. 

• Model uses ResNet50 transfer learning on augmented Messidor-2 

dataset. 

  A R T I C L E  I N F O  

Article history: 
Received                                                                        02 Sep.                                      2025 
Received in revised form                                               15 Sep.                                       2025 

Accepted                                                                        14 Oct.                                        2025 
Final Proofreading                                                         25 Oct.                                              2025 

Available online                                                             27 Dec.                                 2025     
 

© THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY 
LICENSE. http://creativecommons.org/licenses/by/4.0/ 

 

Citation: Jena SK, Mishra D, Pattanayak BK, Rautaray PK, Dash 

BB. Application of Deep Learning and IoT for Detection of 

Diabetic Retinopathy and Diabetic Macular Edema. Tikrit 

Journal of Engineering Sciences 2025; 32(Sp1): 2737.  

http://doi.org/10.25130/tjes.sp1.2025.10 

*Corresponding author:  

Binod Kumar Pattanayak 

Department of Computer Science & Engineering, Institute of 

Technical Education and Research, Siksha ‘O’ Anusandhan, 

Deemed to be University, Bhubaneswar, Odisha, India. 

 

Abstract: In recent years, diabetes mellitus has been 

increasing rapidly, and due to that, around 380 million 

people around the globe have been affected. This disease 

may cause many people to become blind and other health 

issues. Diabetic Macular Edema (DME) and Diabetic 

Retinopathy (DR) are medical conditions in humans 

caused by prolonged high blood sugar levels and have a 

direct impact on human eyesight, which can subsequently 

lead to blindness. In the early stages, DR usually 

progresses without any remarkable symptoms, making 

early detection difficult. If left untreated for a prolonged 

period, it can result in permanent vision loss. To facilitate 

proper diagnosis and timely treatment, computer-based 

systems today often rely on clinical images. In fact, a vital 

indicator of DR is the presence of microaneurysms (MA), 

which are critical for identifying the onset of the disease. 

In line with the emergence of the Internet of Things (IoT), 

a wide range of electronic devices can be usefully 

interconnected and are very capable of collecting, 

transmitting, and responding to data in real time. In the 

field of human healthcare, such IoT-powered systems 

possess sufficient capabilities to support remote 

diagnosis, particularly through the use of medical sensors 

in telemedicine scenarios. Nonetheless, such a shift can 

lead to critical privacy issues for a patient. The protection 

of critical health-related information becomes particularly 

critical. Hence, the major challenge here is implementing 

remote systems to support remote diagnosis while 

ensuring strict confidentiality to protect the patient's 

privacy. In the present research work, an IoT-based deep 

learning approach achieving 98.86% accuracy for Diabetic 

Macular Edema (DME) and 86.04% for Diabetic 

Retinopathy is proposed. 
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1.INTRODUCTION
In the last two decades or so, data on diabetes 
published by global health organizations have 
significantly increased, leading to serious 
concerns for public health. As claimed by the 
IDF Diabetes Atlas, almost 500 million people 
have been diagnosed with diabetes globally 
across all age groups. Health professionals 
estimate this number may reach 700 million by 
2045, underscoring a growing public health 
crisis. In addition, the Atlas predicts that by 
2040, DR may presumably leave an impact on 
almost one in three people suffering from 
diabetes, a complication that arises from 
impairment of the retina's rear blood vessels. In 
the absence of a timely diagnosis and 
appropriate treatment, DR can progress and 
lead to significant vision impairment or even 
blindness, underscoring the critical necessity 
for early detection and prompt medical 
intervention [1]. Recently, the DR assessment 
has primarily relied on manual analysis of 
fundus images by healthcare professionals. 
This method is highly time-consuming and 
limited by a shortage of specialized personnel, 
particularly as the diabetic population grows. 
Consequently, a large number of diabetic 
patients fail to get in-time diagnoses, and 
consequently, the disease remains unnoticed 
till the moment it progresses to a severe stage. 
However, although routine retinal screenings 
are strongly recommended for people with 
diabetes, a significant number of such cases 
stay undetected until significant damage has 
occurred. Such a scenario underscores the 
urgent need for an automated system capable of 
efficiently identifying DR at an earlier stage, 
enabling timely care to improve patient 
outcomes [2]. Various studies in this field 
report using fundus images that provide a 
visual representation of the retina's current 
health status. By assisting with many 
procedures, such as DR detection, retinal blood 
vessel segmentation, and associated lesion 
identification, these pictures are necessary for 
DR diagnosis [3]. DR can be successfully 
detected and its progression monitored by 
identifying and classifying lesions in such 
fundus images. Microaneurysms (MAs), 
superficial retinal hemorrhages (SRHs), 
exudates (soft exudates (Ses)), cotton wool 
spots (CWSs), and intrareticular hemorrhages 
(IHEs) are the primary indicators. A 
comparison of retinas with and without DR is 
shown in Fig. 1, highlighting the diagnostic 
utility of these lesions in assessing the severity 
of the ailment. In addition, Figure 2 depicts the 
various phases of retinopathy. Such strategies 
significantly benefit from extensive labeled 
fundus image collections to train models 
sufficiently capable of accurately detecting and 
categorizing lesions linked to DR, including 
microaneurysms, hemorrhages, and exudates. 

By examining sufficiently complex features and 
patterns in the said images, machine learning 
algorithms are sufficiently capable of 
differentiating between retinas in good health 
and those that are not, while assessing the 
severity of the impairment. Deep learning is a 
subset of machine learning. It can significantly 
improve the accuracy of classification systems 
for DR, thereby enabling models to 
automatically learn hierarchical features 
directly from unprocessed image data. In deep 
learning, convolutional neural networks 
(CNNs) are a popular architecture that is 
convincingly effective for image recognition 
and has been successfully implemented for the 
detection and grading of DR. The accuracy and 
speed of diagnosing retinal illnesses have 
significantly improved with the 
implementation of AI technologies, particularly 
deep learning and machine learning. This 
advancement enables early detection and 
timely treatment of patients with diabetes, 
which is essential for preventing visual loss. 
Detection and grading are two major 
approaches to diagnosing DR. The strategy of 
binary classification that distinguishes between 
a retina in good health and one affected by DR 
is called detection. Grading, on the contrary, 
enables the identification and grading of 
affected retinal regions, thereby categorizing 
disease severity as mild, moderate, or severe 
[4]. These approaches are critical for accurate 
assessment of DR severity, which assists in 
planning necessary treatment and patient care 
[18]. Given the sensitivity of health-related 
information and the potential for modification 
and illegal access, security appears essential for 
medical image processing. To protect sensitive 
information, several crucial measures must be 
taken, with data encryption as the most vital 
strategy. Encryption of medical images during 
both storage and transmission ensures that the 
relevant information is accessible only to 
personnel with the correct decryption key. This 
study proposes using Homomorphic 
Encryption, i.e., a highly secure encryption 
method, to empower the protection of medical 
images [5]. 
1.1.Homomorphic Encryption  
It is possible to perform the necessary 
calculations directly on the encrypted data 
received, without first decrypting it, using a 
cryptographic technique known as 
homomorphic encryption. The capabilities of 
such an encryption technique reveal that users 
can securely process and analyze sensitive 
information, thereby maintaining the 
confidentiality of the received information. In 
fact, the homomorphic encryption technique 
can transform data into a coded form, enabling 
analysis without revealing the underlying 
private information. To ensure the safe 
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encryption and decryption of the data, there are 
three basic forms of homomorphic encryption, 
each based on a public-key encryption 
technique. In real-world scenarios, 
homomorphic encryption enables splitting 
encrypted data into multiple segments, with a 
master key used to decrypt the entire dataset 
and additional keys to access specific portions. 
This feature allows multiple users to 
independently access and process different 
portions of the encrypted data. As a result, more 
precise control over data privacy can be 
achieved, thereby improving both security and 
confidentiality of the data [7].   Such an 
encryption has a few drawbacks as well, 
especially when the ciphertext becomes 
unnecessarily noisy, which may obstruct 

accurate decoding and trustworthy 
computation. The computational load herein 
increases linearly with noise levels, resulting in 
decreased performance and a seemingly slower 
encryption process. In a slightly homomorphic 
encryption (SHE) approach, the maximum 
number of successive multiplications, referred 
to as the multiplicative depth, may necessarily 
be limited to maintain reliability, which is 
another vital constraint. Despite such 
challenges, SHE remains a valuable tool, 
especially in physics-related fields where 
coherent states are involved. An instance of 
homomorphic encryption that can be fruitfully 
applied to medical imaging is presented in 
Figure 3. A list of different forms of 
homomorphic encryption is detailed below. 

 
Fig. 1 Healthy Retina and Affected Retina. 

 
Fig. 2 Different Stages of Retinopathy.

 
Fig. 3 Homomorphic Encryption: Encryption and Decryption. 
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1.2.Fully Homomorphic Encryption Vs 
Somewhat Encryption 
Partial homomorphic encryption served as the 
basis for the development of fully 
homomorphic encryption. Although the 
mathematical concepts of the two types are 
identical, their capacities are very different. The 
main distinction is that partially homomorphic 
encryption has restrictions. Due to the noise 
accumulation in the ciphertext, it can only 
execute a limited number of mathematical 
operations on encrypted data. On the contrary, 
fully homomorphic encryption can overcome 
the aforementioned restrictions, thereby 
facilitating more complex computations over 
encrypted data [5]. Here, different encryption 
techniques serve different purposes and can be 
successfully applied in the same domain. For 
example, somewhat homomorphic encryption 
is more preferable for stationary 5G networks, 
wherein data paths are presumably limited and 
only a few processing units are involved in the 
process, whereas fully homomorphic 
encryption is comparatively more preferable for 
mobile 5G networks, for the reason that it 
necessarily supports more extensive 
homomorphic operations overcoming the 
bottlenecks induced from somewhat 
homomorphic encryption [6]. Fully 
Homomorphic Encryption (FHE) enables an 
unlimited number of operations on encrypted 
data, thereby facilitating addition and 
multiplication. On the other hand, Somewhat 

Homomorphic Encryption (SHE) supports 
limited operations that can eventually be 
performed, allowing only addition or 
multiplication, but not both at the same time, 
and often imposes restrictions on how many 
times these operations can be conducted. This 
significant distinction makes FHE more flexible 
for performing intricate, unbounded 
calculations on encrypted data. Among 
homomorphic encryption approaches, Fully 
Homomorphic Encryption (FHE) offers 
significantly greater flexibility and processing 
power. It consequently allows assessing any 
computational circuit, regardless of its depth, 
including those composed of different logic 
gates, such as AND, OR, and NOT. Because it 
can facilitate complex operations directly on 
encrypted data, avoiding decryption, FHE is 
beneficial for applications that require secure, 
private computation [7]. Fully Homomorphic 
Encryption (FHE) provides a robust approach 
to ensuring the security and privacy of data, 
particularly in challenging circumstances, such 
as high mobility, constrained bandwidth, and 
shifting network conditions. Its capability to 
perform complex computations directly on 
encrypted data makes it particularly effective in 
addressing the security demands of mobile 
networks, thereby strengthening data 
protection in these dynamic settings [8]. A 
description of homomorphic encryption is 
presented in Fig. 4.  

 
Fig. 4 Homomorphic Encryption.

1.3.Retina Dataset 
The analysis of retina images for tasks such as 
blood vessel segmentation and DR detection is 
supported by numerous publicly available 
datasets. Such datasets are essential for 
benchmarking performance against similar 
systems and for training, validating, and testing 
various machine learning models. There are 
various approaches to retinal imaging, but the 
two most widely used are fundus photography 

and optical coherence tomography (OCT). It 
provides both 2D and 3D views of the retina 
using non-coherent light, offering detailed 
insights into its structure and thickness. 
However, fundus photography uses reflected 
light to create two-dimensional photographs of 
the retina. Recently, OCT has gained 
prominence due to its enhanced imaging 
capabilities. Furthermore, a variety of publicly 
available fundus imaging datasets are 
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frequently utilized in studies and the creation of 
diagnostic models [10]. Some of the most 
widely recognized fundus image datasets 
include: 

• Eighty-nine retinal fundus images with 
a resolution of 1500 × 1152 pixels and a 
50-degree field of view (FOV) comprise 
the publicly accessible dataset 
DIARETDB1 [9]. Of them, five depict 
healthy retinal states, and the 
remaining 84 depict cases of DR. 
Crucially, a team of four clinical 
specialists has meticulously examined 
and annotated every image in the 
collection to guarantee correct labeling 
and facilitate in-depth analysis. 

• The Kaggle DR Dataset consists of 
88,702 high-resolution retinal images 
with dimensions ranging from 433 × 
289 pixels to 5184 × 3456 pixels, 
captured with various camera models. 
Five categories were used to arrange 
the dataset, each representing a 
different DR stage severity. While the 
whole dataset is available, detailed 
annotations are primarily provided for 
the training set, which is openly 
accessible. It is essential to be 
extremely cautious when dealing with 
this dataset, as some images may 
appear of inconsistent quality or may 
be incorrectly labeled.   

• E-ophtha EX and E-ophtha MA are two 
distinguishable subsets of the E-ophtha 
retinal image dataset that are publicly 
available. The E-ophtha EX subset 
includes 35 retinal images without 
disease and 47 photos with exudates. 
Nevertheless, there are 148 
photographs with microaneurysms and 
233 images of healthy retinas in the E-
ophtha MA subset. This organized 
division supports the targeted study of 
specific DR lesions. 

A total of 13,673 retinal fundus images from 147 
medical facilities spread across 23 Chinese 
regions are included in the Diabetic 
Retinopathy Dataset (DDR). The dataset is 
categorized into five groups based on the 
severity levels of diabetic retinopathy: no DR, 
mild DR, moderate DR, severe DR, and 
proliferative DR. An additional low-quality 
image category has been excluded from the 
dataset used in the present study. All images 
have been preprocessed to eliminate the black 
background for better analysis. Notably, 757 of 
these images have been carefully annotated to 
mark specific DR-related lesions, enabling 
lesion-level evaluation and model training. 
The DRIVE (Digital Retinal Images for Vessel 
Extraction) dataset is currently publicly 
available for segmenting retinal blood vessels. 
It comprises 40 color fundus images, each with 

a field of view (FOV) of 45 degrees and a pixel 
size of 565 × 584. Seven of these images depict 
the early stages of mild diabetic retinopathy, 
whereas the others depict normal retinal 
characteristics. In retinal image analysis, 
datasets are most often used to evaluate 
vascular segmentation approaches. The High-
Resolution Fundus (HRF) dataset has been 
developed for retinal blood vessel segmentation 
and comprises 45 images with a very high 
resolution, each with a resolution of 3504 × 
2336 pixels. The dataset was split equally into 
three categories: 15 images of DR, 15 of healthy 
retinas, and 15 of glaucoma cases. Such an even 
distribution makes the HRF dataset viable for 
comparative analysis among multiple retinal 
pathologies. 
1.4.MESSIDOR Dataset  
Messidor Dataset is widely used, publicly 
accessible, supports research on DR, and is 
currently available in two main versions: 
Messidor-1 and Messidor-2. Such datasets have 
been designed to advance the development of 
computer-assisted diagnostic tools for DR. 
1,200 color fundus images from Messidor-1 
have a field of vision (FOV) of 45 degrees. Each 
image here has been carefully annotated to 
reflect various stages of diabetic retinopathy. 
Using RGB cameras, 800 images were obtained 
after pupil dilation and 400 without it, collected 
from three different ophthalmology centers. 
Macular edema risk has been split into three 
different groups: 1, 2, and 0 represent no, 
moderate, and high levels, respectively. In 
addition, each image has been labeled with 
diagnostic information, including DR severity 
stages split into four categories: mild (level 1), 
moderate (level 2), severe (level 3), and zero (no 
DR). Messidor-1 serves as a vital standard for 
assessing the effectiveness of automated 
systems for detecting and grading DR and 
identifying macular edema. Messidor-2 extends 
the original Messidor dataset by adding 1,748 
retinal fundus images, also captured with a 45-
degree FOV. This dataset comprises additional 
images gathered at Brest University Hospital in 
France, with 690 images taken at Brest between 
October 2009 and September 2010, and the 
remaining 1,058 images from the original 
Messidor dataset. Every picture was taken with 
a non-mydriatic fundus camera at a consistent 
45° FOV, ensuring uniform image quality. The 
dataset is organized with a folder containing all 
image files and an associated CSV file that holds 
metadata, including 1,744 unique Image IDs 
and graded retinopathy diagnoses on a five-
point scale: Grade 0 (1,017 images), Grade 1 
(270 images), Grade 2 (347 images), Grade 3 
(75 images), and Grade 4 (35 images). 
Additionally, diabetic macular edema (DME) is 
labeled as Grade 0 (no referable DME) for 1,593 
images and Grade 1 (referable DME) for 151 
images. The STARE dataset includes 20 retinal 
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images with a 35-degree field of view and a 700 
× 605-pixel resolution intended for blood vessel 
segmentation. Ten of these photos display 
typical retinal architecture. The CHASE DB1 
dataset is another publicly available collection 
for retinal blood vessel segmentation. It 
comprises 28 high-resolution images (1280 × 
960 pixels) captured with a 30-degree field of 
view. With a 50-degree field of view (FOV), the 
Indian DR Image Dataset (IDRiD) has 516 
fundus images. Each image is meticulously 
labeled to correspond to one of five DR stages. 
The ROC dataset includes 100 retinal images 
with a 45-degree field of view and sizes ranging 
from 768 × 576 to 1389 × 1383 pixels. Only the 
training set has ground-truth labels, even 
though every image is labeled for 
microaneurysms (MA) detection. Finally, the 
DR2 collection comprises 435 publicly available 
retinal images with a resolution of 857 × 569 
pixels. Of the 98 photos identified as needing 
referral, each image includes annotations 
indicating whether additional clinical 
evaluation is necessary. 
2.RELATED WORK 
Using a Convolutional Neural Network (CNN), 
the Kaggle dataset's Images were classified as 
either normal or exhibiting DR symptoms. For 
the present investigation, 1,000 photos were 
taken from the dataset. Data augmentation 
techniques were applied to improve the dataset 
before importing the photos into the CNN 
model. The images were resized to 224×224×3 
pixels. Augmentation methods such as 
rescaling, shearing, rotation, flipping, and 
translation were employed to increase the 
variety and volume of training data. The CNN 
architecture consisted of eight convolutional 
layers, four max-pooling layers, and two fully 
connected layers. The final classification layer 
used the SoftMax activation function to 
categorize each image. This approach achieved 
94.5% accuracy in classifying images as 
referable or non-referable diabetic retinopathy 
using the model's predictions [11]. Additionally, 
the author suggested several pre-trained deep 
learning models for extracting and classifying 
multi-label features, specifically ResNet50, 
ResNet152, and SqueezeNet1, all of which use 
pre-trained CNN architectures. Experimental 
results demonstrated accuracies of 93.67% for 
ResNet50, 91.94% for SqueezeNet1, and 
94.40% for ResNet152. These findings highlight 
the models’ effectiveness and their potential for 
integration into routine clinical practice, 
supporting large-scale DR screening programs 
[12]. When the author recommended utilizing 
ResNet-3, a Gaussian filter, and image 
normalization, the model achieved 85% 
accuracy and 86% sensitivity in binary 
classification [13]. Using the ResNet50 model, 
the author achieved 92% sensitivity, 92.6% 
accuracy, and 96.3% area under the receiver 

operating characteristic (ROC) curve (AUC). 
The Messidor dataset and the ISBI 2018 IDRiD 
challenge dataset are two well-known 
benchmark datasets used to assess the network. 
The suggested method performed better than 
competing approaches in these evaluations. In 
the ISBI 2018 IDRiD competition, it performed 
best, demonstrating its strong ability to 
correctly classify photos of diabetic 
retinopathy. Additionally, it outperformed 
current techniques on the Messidor dataset, 
demonstrating its resilience and potency in DR 
detection. These findings, taken together, 
highlight the model's excellence and 
dependability in detecting DR from medical 
photos, as confirmed by extensive testing on 
recognized benchmark datasets [14]. Rautaray 
et al. [18] proposed a method achieving 95.1% 
accuracy in detecting macular edema via 
transfer learning with ResNet18. 
3.METHODOLOGY 
The present study introduces the detection of 
DR and DME using the Internet of Things (IoT) 
and the Multi-Level Feature Extraction and 
Classification (ML-FEC) architecture, a 
revolutionary deep learning architecture. Using 
IoT devices, the images were collected. Then, 
the images were forwarded to the cloud 
platform where the developed model is present.  
As shown in Fig. 5, the developed model is 
intended to identify and categorize DR lesions 
in color fundus photographs (CFPs) that cover 
all five stages of DR. Unlike traditional 
classification methods that treat output labels 
as mutually exclusive, the ML-FEC model 
adopts a multi-label classification strategy, 
enabling it to assign multiple relevant labels to 
a single image. This approach acknowledges the 
possibility of co-occurring lesions, enhancing 
diagnostic accuracy. By incorporating advanced 
deep learning methods in the framework of ML-
FEC, the model significantly improves the 
precision and reliability of lesion detection and 
stage classification, accounting for the complex 
and varied presentations of DR. A distinctive 
advantage of the proposed method is its 
capacity to conduct a comprehensive analysis of 
CFPs by detecting multiple DR lesion types 
simultaneously, facilitating a deeper 
understanding of disease progression and 
supports more informed clinical decisions. The 
annotation process was conducted under expert 
oversight, with each image thoroughly reviewed 
and labeled by a team of specialists. The labels 
were documented in Excel spreadsheets and 
include diagnostic categories ranging from “No 
DR” to progressively severe stages, such as 
“Mild NPDR,” “Moderate NPDR,” “Severe 
NPDR,” “Early PDR,” and “High-risk PDR.” 
Additionally, each image was annotated to 
highlight specific DR-associated lesion types. 
Figure 6 presents the systematic arrangement 
of the dataset, along with sample retinal images 
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that showcase distinct visual characteristics. 
These examples are accompanied by their 
respective classifications, as documented in the 
corresponding Excel annotation files. Here, a 
residual learning model has been proposed to 
train deep neural networks, improving the 
training of highly deep neural networks 
developed by Microsoft's research and 
development wing, called ResNet (Residual 

Network). In a traditional CNN, adding new 
layers can degrade performance due to 
vanishing gradients. Figure 7 illustrates the 
architectural implementation of Multi-Level 
Feature Extraction and Classification (ML-
FEC). Here, from a single dataset, features are 
extracted to classify both classes: DR (5 classes) 
and DME (2 classes). 

 
Fig. 5 Architecture of IoT Using a Mobile Device. 

 
Fig. 6 Deep Learning Multi-Label Feature Extraction and Classification (ML-FEC) Model. 

 
Proposed CNN Model 
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Fig. 7 Multi-Level Feature Extraction and Classification (ML-FEC). 

In non-residual learning, the neural network 
learns directly from: 

H(x) (1) 
where x is the input, and H(x) is the output 
mapping to be learned.  
However, in residual learning, the neural 
network learns: 

H(x)=F(x)+x (2) 
where F(x) is the residual function, and X is the 
input. 
The architecture of the proposed residual 
learning is illustrated in Figure 8. Reusing a 
model trained on one job to address a different 
but related problem is known as transfer 
learning, and it is a crucial machine learning 
technique. Because of its strong performance 
and computational efficiency, ResNet (Residual 
Network) is one of the most widely used 
architectures in image classification. In 
particular, ResNet50 is a 50-layer deep 
convolutional neural network. A 7×7 
convolutional filter was used in its first layer. 
The architecture was organized into four main 
convolutional stages, each consisting of two 
residual blocks. Each residual block had two 
learnable weighted layers and a skip link that 
adds the second layer's output straight to the 
activation function (ReLU). If the dimensions 
of the block’s input and output matched, an 
identity shortcut was used. However, when they 
differed, a convolutional pooling layer adjusted 
the skip connection to match the shape. 
ResNet50 accepts input images with 
dimensions (224, 224, 3), where 3 denotes the 
number of RGB color channels, 224 the width, 
and 224 the height. The network ends with a 
fully connected (FC) layer that feeds into a 
sequential layer for final predictions. The use of 
residual connections in this architecture helps 
mitigate the vanishing gradient problem, 
making it easier to train deeper networks 
effectively. In this work, 2048 fully connected 
layers were used, with a new layer of size 512 
connected from 512 to 128, then to 5 
corresponding to the number of diabetic 
retinopathy classes. Similarly, for diabetic 

macular edema, the network will be 2048-512, 
512-128, and 128-2, corresponding to the sizes 
of the edema classes. The architecture of the 
present CNN model is illustrated in Figure 9. 
3.1.Experimental Setup Dataset 
The present study used the Messidor-2 dataset, 
which includes a folder containing various 
diabetic retinopathy (DR) images and an 
accompanying CSV file with four columns. The 
dataset includes 1,744 unique image identifiers. 
These images were classified as 0: None (1,017 
images),1: Mild DR (270 images),2: Moderate 
DR (347 images), 3: Severe DR (75 images), and 
4: Proliferative DR (PDR) (35 images). A 
column for diabetic macular edema (DME) 
grading, classified as: 0: No Referable DME 
(1,593 images) and 1: Referable DME (151 
images), as shown in Figure 10. Severe and 
proliferative DR were represented by only a few 
images, indicating an unbalanced dataset; 
therefore, it should be balanced by applying 
data augmentation. 
3.2.Data Augmentation 
Data augmentation plays a critical role, 
particularly in scenarios where labeled data is 
scarce. By generating modified versions of 
existing images, it increases the effective 
dataset size and enhances the model’s ability to 
generalize to unseen data. In deep learning 
applications, this method is widely utilized, 
particularly when training convolutional neural 
networks (CNNs) for tasks such as object 
detection, image classification, and 
segmentation. In this study, augmentation 
methods applied to each image included 
horizontal and vertical flipping, rotation, 
grayscale conversion, Gaussian noise addition, 
channel shuffling, and Contrast Limited 
Adaptive Histogram Equalization (CLAHE). An 
example of an augmented image is illustrated in 
Figure 11. Since the task involves multilevel 
classification for both retinopathy and edema, 
the dataset was expanded and balanced using 
data augmentation. After augmentation, the 
distribution of retinopathy classes was as 
follows: "PDR": 335 photographs, "None": 
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1,017 images, "Mild DR": 318 images, 
"Moderate DR": 863 images, and "Severe DR": 
777 images. The total number of retinopathy 
images was 3310. Figure 12 shows the 
distribution of the augmented dataset. The 

distribution of different dataset classes before 
and after DR augmentation is tabulated in 
Table 1, and the distribution of different DME 
classes is tabulated in Table 2. 

 

Fig. 8 Residual Learning. 

 

Fig. 9 Detailed Architecture of the Pretrained CNN Model for the Proposed Work. 
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Fig. 10 Retinopathy and Edema. 

 
Fig. 11 Augmented Sample Image. 

 

Fig. 12 Retinopathy and Edema after Augmentation. 

 

Table 1 Data Distribution of Retinopathy before and after Data Augmentation. 

Augmentation None Mild DR Moderate DR Severe DR Proliferative DR Total 

Before  1017 270 347 75 35 1744 
After  1017 318 863 777 335 3310 

Table 2 Data Distribution of Edema before and after Data Augmentation. 

Augmentation No Referable DME Referable DME Total 

Before  1593 151 1744 
After  1911 1399 3310 
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4.RESULTS  
Python 3 was used to create the suggested 
method utilizing the Google Colaboratory 
platform. For the tests, a Windows 10 PC with 
an Intel i3 processor and 8GB of RAM was 
utilized. The Convolutional Neural Network 
(CNN) model achieved 98.86% for Diabetic 
Macular Edema (DME) and 86.04% for DR 
during testing. The base model's accuracy is 
92.46 for DME and 79.60 for DR. The 
evaluation's confusion matrix and performance 
matrix for DME are presented in Tables 4 and 
5, respectively, which served as the basis for 
determining critical performance metrics, such 
as F-score, accuracy, and precision. Moreover, 
the performance of the base model Resnet50 
and the proposed model has been noted. The 
results are summarized in Tables 6 and 7 for the 
performance and confusion matrices of DR. For 
model implementation, a transfer learning 
approach using ResNet-50 was employed. The 
training setup had a learning rate of 0.0003, 
100 iterations, and a batch size of 32. To test the 
performance of the proposed model, several 
widely used assessment measures were 

employed, including loss function, optimizer, 
learning rate, learning rate decay, batch size, 
epochs, and dropout, as shown in Table 3. The 
method used to compute these metrics is 
explained as follows: 

Precision= 
𝑵(𝑻𝑷)

𝑵(𝑻𝑷)+𝑵(𝑭𝑷)
 (1) 

Recall=
𝑵(𝑻𝑷)

𝑵(𝑻𝑷)+𝑵(𝑭𝑵)
 (2) 

F-score=𝟐 ×
𝒑𝒓𝒆𝒄𝒊𝒔𝒔𝒊𝒐𝒏∗𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒔𝒊𝒐𝒏+𝒓𝒆𝒄𝒂𝒍𝒍
 (3) 

Accuracy=
𝑵(𝑻𝑷)+𝑵(𝑻𝑵)

𝑵(𝑻𝑷)+𝑵(𝑻𝑵)+𝑵(𝑭𝑷)+𝑵(𝑭𝑵)
 (4) 

5.DISCUSSION  
The discussion includes the cumulative counts 
of true positives (N(TP)), false positives 
(N(FP)), true negatives (N(TN)), and false 
negatives (N(FN)), calculated separately for 
each class. To evaluate the model’s overall 
effectiveness, these values are averaged across 
the two classes, providing a comprehensive 
performance measure. The accuracy of the 
performance analysis is described in the 
following figures. 

Table 3 Represents the Model Hyperparameters and Their Values. 

Hyperparameter Setting 

Loss Function Categorical Cross-Entropy 
Optimizer Adam 
Learning Rate 3e-5 
Learning Rate Decay 0.3 
Batch Size 32 
Total number of Batches 104 
Epochs 100 
Dropout Rate 0.2 
Regularization L2 
Early Stopping No 
Validation Set 15% of training samples 
Additional Layers Yes, FC(1024), FC(512), FC(128) 
Kernel Size 7 × 7, 3 × 3, 1 × 1 
Stride and padding, Pool Size Stride 2, padding 3, 1, pool 3 × 3, 2 × 2 

Table 4 Confusion Matrix for Diabetic Macular Edema. 

Model Proposed ResNet50 Base 

Class Predicted Predicted 
Actual Abnormal Normal Abnormal Normal 
Abnormal 145 3 142 6 
Normal 0 117 3 114 

Table 5 Performance Matrix in Diabetic Macular Edema Detection and Classification. 
Model Proposed ResNet50 Base 
Class Precision Recall F1score Precision Recall F1score Support 
Abnormal 1.00 0.98 0.99 0.98 0.96 0.97 148 
Normal 0.97 1.00 0.99 0.95 0.97 0.96 117 
macro avg 0.99 0.99 0.99 0.96 0.97 0.97 265 
weighted avg 0.99 0.99 0.99 0.97 0.97 0.97 265 
Accuracy 98.86% 96.60% 

Table 6 Confusion Matrix for 5-class Diabetic Retinopathy for the Proposed Model. 

Actual/Predicted 
Predicted 
None Mild DR Moderate DR Severe DR Proliferative DR 

 
 
Actual 

None 70 2 12 0 0 
Mild DR 2 22 4 0 0 
Moderate DR 11 2 58 0 0 
Severe DR 0 0 3 58 0 
Proliferative DR 0 0 1 0 20 
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Table 7 Performance Matrix of 5-Class Diabetic Retinopathy for the Proposed Model. 
Class Precision Recall F1score Support Accuracy 

(%) 
Weighted F1score 
(%) 

None 0.843 0.833 0.838 84  
 
 
 
 
 
 
86.04 

 
 
 
 
 
 
 
86.2 

Mild DR 0.846 0.786 0.815 28 
Moderate DR 0.744 0.817 0.779 71 
Severe DR 1.000 0.951 0.975 61 
Proliferative DR 1.000 0.952 0.975 21 
Macro average 0.887 0.868 0.876 265 
Weighted average 0.865 0.860 0.862 265 

Table 8 Confusion Matrix for 5-Class Diabetic Retinopathy for ResNet50 Base Model. 
Actual/Predicted Predicted 

None Mild DR Moderate DR Severe DR Proliferative DR 
 
 
Actual 

None 67 13 3 1 0 
Mild DR 10 13 5 0 0 
Moderate DR 11 4 53 3 0 
Severe DR 0 0 2 59 0 
Proliferative DR 0 1 1 0 19 

Table 9 Performance Matrix of 5-Class Diabetic Retinopathy for ResNet50 Base Model. 
Class Precision Recall F1score Support Accuracy 

(%) 
Weighted 
F1score(%) 

None 0.761 0.798 0.779 84  
 
 
 
 
 
 
79.6 

 
 
 
 
 
 
 
79.8 

Mild DR 0.419 0.464 0.440 28 
Moderate DR 0.828 0.746 0.785 71 
Severe DR 0.937 0.967 0.952 61 
Proliferative DR 1.000 0.905 0.950 21 
Macro average 0.789 0.776 0.781 265 
Weighted average 0.803 0.781 0.788 265 

Table 10 Diabetic Edema Detection and Classification Using External Validation. 

Author DataSet Classification Model Accuracy(%) 

CNN, Xu et al. Kaggel CNN 94.50 
Usman et al. Dataset ResNet 152 94.40 
Alyoubi et al. Dataset Resnet 3 85.00 
Li, Xiaomeng et al. IDRiD ResNet 50 92.60 
Pravat et al. Messidor-2 Modified ResNet 18 95.10 
ResNet50 Base Messidor-2(DME) ResNet50 92.46 
Proposed Model Messidor-2(DME) Proposed CNN 98.86 
ResNet50 Base Messidor-2(DR) ResNet50 79.60 
Proposed Model Messidor-2(DR) Proposed CNN 86.04 

 
Fig. 11 Retinopathy and Edema Accuracy Graph. 
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Fig. 12 Representing Train and Test Loss. 

6.CONCLUSION 
There is a revolutionary opportunity to improve 
patient outcomes and the standard of care by 
incorporating Internet of Things (IoT) 
technologies into the treatment of DR. 
Clinicians can enhance early diagnosis, ongoing 
monitoring, and prompt medical intervention 
for those at risk by employing IoT-enabled 
devices such as wearable health monitors and 
retinal imaging devices. Adoption of these 
technologies, however, also brings up 
important concerns, such as privacy protection, 
data security, and system compatibility. 
Coordinated efforts from patients, regulatory 
agencies, technology developers, and 
healthcare professionals are needed to address 
these issues. The successful implementation of 
IoT solutions in clinical settings depends on 
this kind of cooperation. In conclusion, the 
effectiveness and accessibility of diabetic eye 
care could be significantly improved by 
integrating IoT with the treatment of DR. 
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