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Abstract: In recent years, diabetes mellitus has been
increasing rapidly, and due to that, around 380 million
people around the globe have been affected. This disease
may cause many people to become blind and other health
issues. Diabetic Macular Edema (DME) and Diabetic
Retinopathy (DR) are medical conditions in humans
caused by prolonged high blood sugar levels and have a
direct impact on human eyesight, which can subsequently
lead to blindness. In the early stages, DR usually
progresses without any remarkable symptoms, making
early detection difficult. If left untreated for a prolonged
period, it can result in permanent vision loss. To facilitate
proper diagnosis and timely treatment, computer-based
systems today often rely on clinical images. In fact, a vital
indicator of DR is the presence of microaneurysms (MA),
which are critical for identifying the onset of the disease.
In line with the emergence of the Internet of Things (IoT),
a wide range of electronic devices can be usefully
interconnected and are very capable of collecting,
transmitting, and responding to data in real time. In the
field of human healthcare, such IoT-powered systems
possess sufficient capabilities to support remote
diagnosis, particularly through the use of medical sensors
in telemedicine scenarios. Nonetheless, such a shift can
lead to critical privacy issues for a patient. The protection
of critical health-related information becomes particularly
critical. Hence, the major challenge here is implementing
remote systems to support remote diagnosis while
ensuring strict confidentiality to protect the patient's
privacy. In the present research work, an IoT-based deep
learning approach achieving 98.86% accuracy for Diabetic
Macular Edema (DME) and 86.04% for Diabetic
Retinopathy is proposed.
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1. INTRODUCTION

In the last two decades or so, data on diabetes
published by global health organizations have
significantly increased, leading to serious
concerns for public health. As claimed by the
IDF Diabetes Atlas, almost 500 million people
have been diagnosed with diabetes globally
across all age groups. Health professionals
estimate this number may reach 700 million by
2045, underscoring a growing public health
crisis. In addition, the Atlas predicts that by
2040, DR may presumably leave an impact on
almost one in three people suffering from
diabetes, a complication that arises from
impairment of the retina's rear blood vessels. In
the absence of a timely diagnosis and
appropriate treatment, DR can progress and
lead to significant vision impairment or even
blindness, underscoring the critical necessity
for early detection and prompt medical
intervention [1]. Recently, the DR assessment
has primarily relied on manual analysis of
fundus images by healthcare professionals.
This method is highly time-consuming and
limited by a shortage of specialized personnel,
particularly as the diabetic population grows.
Consequently, a large number of diabetic
patients fail to get in-time diagnoses, and
consequently, the disease remains unnoticed
till the moment it progresses to a severe stage.
However, although routine retinal screenings
are strongly recommended for people with
diabetes, a significant number of such cases
stay undetected until significant damage has
occurred. Such a scenario underscores the
urgent need for an automated system capable of
efficiently identifying DR at an earlier stage,
enabling timely care to improve patient
outcomes [2]. Various studies in this field
report using fundus images that provide a
visual representation of the retina's current
health status. By assisting with many
procedures, such as DR detection, retinal blood
vessel segmentation, and associated lesion
identification, these pictures are necessary for
DR diagnosis [3]. DR can be successfully
detected and its progression monitored by
identifying and classifying lesions in such
fundus images. Microaneurysms (MAs),
superficial retinal hemorrhages (SRHs),
exudates (soft exudates (Ses)), cotton wool
spots (CWSs), and intrareticular hemorrhages
(IHEs) are the primary indicators. A
comparison of retinas with and without DR is
shown in Fig. 1, highlighting the diagnostic
utility of these lesions in assessing the severity
of the ailment. In addition, Figure 2 depicts the
various phases of retinopathy. Such strategies
significantly benefit from extensive labeled
fundus image collections to train models
sufficiently capable of accurately detecting and
categorizing lesions linked to DR, including
microaneurysms, hemorrhages, and exudates.

By examining sufficiently complex features and
patterns in the said images, machine learning
algorithms are sufficiently capable of
differentiating between retinas in good health
and those that are not, while assessing the
severity of the impairment. Deep learning is a
subset of machine learning. It can significantly
improve the accuracy of classification systems
for DR, thereby enabling models to
automatically learn hierarchical features
directly from unprocessed image data. In deep
learning, convolutional neural networks
(CNNs) are a popular architecture that is
convincingly effective for image recognition
and has been successfully implemented for the
detection and grading of DR. The accuracy and
speed of diagnosing retinal illnesses have
significantly improved with the
implementation of AI technologies, particularly
deep learning and machine learning. This
advancement enables early detection and
timely treatment of patients with diabetes,
which is essential for preventing visual loss.
Detection and grading are two major
approaches to diagnosing DR. The strategy of
binary classification that distinguishes between
a retina in good health and one affected by DR
is called detection. Grading, on the contrary,
enables the identification and grading of
affected retinal regions, thereby categorizing
disease severity as mild, moderate, or severe
[4]. These approaches are critical for accurate
assessment of DR severity, which assists in
planning necessary treatment and patient care
[18]. Given the sensitivity of health-related
information and the potential for modification
and illegal access, security appears essential for
medical image processing. To protect sensitive
information, several crucial measures must be
taken, with data encryption as the most vital
strategy. Encryption of medical images during
both storage and transmission ensures that the
relevant information is accessible only to
personnel with the correct decryption key. This
study  proposes using Homomorphic
Encryption, i.e., a highly secure encryption
method, to empower the protection of medical
images [5].

1.1.Homomorphic Encryption

It is possible to perform the necessary
calculations directly on the encrypted data
received, without first decrypting it, using a
cryptographic technique known as
homomorphic encryption. The capabilities of
such an encryption technique reveal that users
can securely process and analyze sensitive
information,  thereby  maintaining the
confidentiality of the received information. In
fact, the homomorphic encryption technique
can transform data into a coded form, enabling
analysis without revealing the underlying
private information. To ensure the safe
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encryption and decryption of the data, there are
three basic forms of homomorphic encryption,
each based on a public-key encryption
technique. In real-world scenarios,
homomorphic encryption enables splitting
encrypted data into multiple segments, with a
master key used to decrypt the entire dataset
and additional keys to access specific portions.
This feature allows multiple users to
independently access and process different
portions of the encrypted data. As a result, more
precise control over data privacy can be
achieved, thereby improving both security and
confidentiality of the data [7]. Such an
encryption has a few drawbacks as well,
especially when the ciphertext becomes
unnecessarily noisy, which may obstruct

Nornal Condition of Retina

Optic Disc

Retina Venules

Retina Arterioles

Central Retina Vein

entral Retina Artery

accurate decoding and trustworthy
computation. The computational load herein
increases linearly with noise levels, resulting in
decreased performance and a seemingly slower
encryption process. In a slightly homomorphic
encryption (SHE) approach, the maximum
number of successive multiplications, referred
to as the multiplicative depth, may necessarily
be limited to maintain reliability, which is
another vital constraint. Despite such
challenges, SHE remains a valuable tool,
especially in physics-related fields where
coherent states are involved. An instance of
homomorphic encryption that can be fruitfully
applied to medical imaging is presented in
Figure 3. A list of different forms of

homomorphic encryption is detailed below.
Diabetic Retinopathy

Hemorrhages
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Blood Vessels
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Fig. 1 Healthy Retina and Affected Retina.

STAGES OF DIABETIC RETINOPATHY

Fig. 2 Different Stages of Retinopathy.
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Fig. 3 Homomorphic Encryption: Encryption and Decryption.
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1.2.Fully Homomorphic Encryption Vs
Somewhat Encryption

Partial homomorphic encryption served as the
basis for the development of fully
homomorphic encryption. Although the
mathematical concepts of the two types are
identical, their capacities are very different. The
main distinction is that partially homomorphic
encryption has restrictions. Due to the noise
accumulation in the ciphertext, it can only
execute a limited number of mathematical
operations on encrypted data. On the contrary,
fully homomorphic encryption can overcome
the aforementioned restrictions, thereby
facilitating more complex computations over
encrypted data [5]. Here, different encryption
techniques serve different purposes and can be
successfully applied in the same domain. For
example, somewhat homomorphic encryption
is more preferable for stationary 5G networks,
wherein data paths are presumably limited and
only a few processing units are involved in the
process, whereas fully = homomorphic
encryption is comparatively more preferable for
mobile 5G networks, for the reason that it
necessarily supports more extensive
homomorphic operations overcoming the
bottlenecks  induced from = somewhat
homomorphic encryption [6]. Fully
Homomorphic Encryption (FHE) enables an
unlimited number of operations on encrypted
data, thereby facilitating addition and
multiplication. On the other hand, Somewhat

Homomorphic Encryption (SHE) supports
limited operations that can eventually be
performed, allowing only addition or
multiplication, but not both at the same time,
and often imposes restrictions on how many
times these operations can be conducted. This
significant distinction makes FHE more flexible
for  performing  intricate,  unbounded
calculations on encrypted data. Among
homomorphic encryption approaches, Fully
Homomorphic Encryption (FHE) offers
significantly greater flexibility and processing
power. It consequently allows assessing any
computational circuit, regardless of its depth,
including those composed of different logic
gates, such as AND, OR, and NOT. Because it
can facilitate complex operations directly on
encrypted data, avoiding decryption, FHE is
beneficial for applications that require secure,
private computation [7]. Fully Homomorphic
Encryption (FHE) provides a robust approach
to ensuring the security and privacy of data,
particularly in challenging circumstances, such
as high mobility, constrained bandwidth, and
shifting network conditions. Its capability to
perform complex computations directly on
encrypted data makes it particularly effective in
addressing the security demands of mobile
networks,  thereby  strengthening data
protection in these dynamic settings [8]. A
description of homomorphic encryption is
presented in Fig. 4.

Fully Homomorphic Encryption (FHE)

Sk, Pk
Encpy(x)
o] [#] =)
Mobilex
X Device *
D o B Y = Eval(f, Encpy(x))

Correctness:

Decgy (Y) =f(x) I
Input Privacy:

Enc(x) = Enc(0)

Fully Homomorphic = Correctness for any efficient f

Correctness for universal set

Fig. 4 Homomorphic Encryption.

1.3.Retina Dataset

The analysis of retina images for tasks such as
blood vessel segmentation and DR detection is
supported by numerous publicly available
datasets. Such datasets are essential for
benchmarking performance against similar
systems and for training, validating, and testing
various machine learning models. There are
various approaches to retinal imaging, but the
two most widely used are fundus photography

and optical coherence tomography (OCT). It
provides both 2D and 3D views of the retina
using non-coherent light, offering detailed
insights into its structure and thickness.
However, fundus photography uses reflected
light to create two-dimensional photographs of
the retina. Recently, OCT has gained
prominence due to its enhanced imaging
capabilities. Furthermore, a variety of publicly
available fundus imaging datasets are
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frequently utilized in studies and the creation of
diagnostic models [10]. Some of the most
widely recognized fundus image datasets
include:

¢ Eighty-nine retinal fundus images with
a resolution of 1500 x 1152 pixels and a
50-degree field of view (FOV) comprise
the publicly accessible dataset
DIARETDB1 [9]. Of them, five depict
healthy retinal states, and the
remaining 84 depict cases of DR.
Crucially, a team of four clinical
specialists has meticulously examined
and annotated every image in the
collection to guarantee correct labeling
and facilitate in-depth analysis.

e The Kaggle DR Dataset consists of
88,702 high-resolution retinal images
with dimensions ranging from 433 x
289 pixels to 5184 x 3456 pixels,
captured with various camera models.
Five categories were used to arrange
the dataset, each representing a
different DR stage severity. While the
whole dataset is available, detailed
annotations are primarily provided for
the training set, which is openly
accessible. It is essential to be
extremely cautious when dealing with
this dataset, as some images may
appear of inconsistent quality or may
be incorrectly labeled.

e E-ophtha EX and E-ophtha MA are two
distinguishable subsets of the E-ophtha
retinal image dataset that are publicly
available. The E-ophtha EX subset
includes 35 retinal images without
disease and 47 photos with exudates.
Nevertheless, there are 148
photographs with microaneurysms and
233 images of healthy retinas in the E-
ophtha MA subset. This organized
division supports the targeted study of
specific DR lesions.

A total of 13,673 retinal fundus images from 147
medical facilities spread across 23 Chinese
regions are included in the Diabetic
Retinopathy Dataset (DDR). The dataset is
categorized into five groups based on the
severity levels of diabetic retinopathy: no DR,
mild DR, moderate DR, severe DR, and
proliferative DR. An additional low-quality
image category has been excluded from the
dataset used in the present study. All images
have been preprocessed to eliminate the black
background for better analysis. Notably, 757 of
these images have been carefully annotated to
mark specific DR-related lesions, enabling
lesion-level evaluation and model training.

The DRIVE (Digital Retinal Images for Vessel
Extraction) dataset is currently publicly
available for segmenting retinal blood vessels.
It comprises 40 color fundus images, each with

a field of view (FOV) of 45 degrees and a pixel
size of 565 x 584. Seven of these images depict
the early stages of mild diabetic retinopathy,
whereas the others depict normal retinal
characteristics. In retinal image analysis,
datasets are most often used to evaluate
vascular segmentation approaches. The High-
Resolution Fundus (HRF) dataset has been
developed for retinal blood vessel segmentation
and comprises 45 images with a very high
resolution, each with a resolution of 3504 x
2336 pixels. The dataset was split equally into
three categories: 15 images of DR, 15 of healthy
retinas, and 15 of glaucoma cases. Such an even
distribution makes the HRF dataset viable for
comparative analysis among multiple retinal
pathologies.

1.4.MESSIDOR Dataset

Messidor Dataset is widely used, publicly
accessible, supports research on DR, and is
currently available in two main versions:
Messidor-1 and Messidor-2. Such datasets have
been designed to advance the development of
computer-assisted diagnostic tools for DR.
1,200 color fundus images from Messidor-1
have a field of vision (FOV) of 45 degrees. Each
image here has been carefully annotated to
reflect various stages of diabetic retinopathy.
Using RGB cameras, 800 images were obtained
after pupil dilation and 400 without it, collected
from three different ophthalmology centers.
Macular edema risk has been split into three
different groups: 1, 2, and O represent no,
moderate, and high levels, respectively. In
addition, each image has been labeled with
diagnostic information, including DR severity
stages split into four categories: mild (level 1),
moderate (level 2), severe (level 3), and zero (no
DR). Messidor-1 serves as a vital standard for
assessing the effectiveness of automated
systems for detecting and grading DR and
identifying macular edema. Messidor-2 extends
the original Messidor dataset by adding 1,748
retinal fundus images, also captured with a 45-
degree FOV. This dataset comprises additional
images gathered at Brest University Hospital in
France, with 690 images taken at Brest between
October 2009 and September 2010, and the
remaining 1,058 images from the original
Messidor dataset. Every picture was taken with
a non-mydriatic fundus camera at a consistent
45° FOV, ensuring uniform image quality. The
dataset is organized with a folder containing all
image files and an associated CSV file that holds
metadata, including 1,744 unique Image IDs
and graded retinopathy diagnoses on a five-
point scale: Grade o (1,017 images), Grade 1
(270 images), Grade 2 (347 images), Grade 3
(75 images), and Grade 4 (35 images).
Additionally, diabetic macular edema (DME) is
labeled as Grade o (no referable DME) for 1,593
images and Grade 1 (referable DME) for 151
images. The STARE dataset includes 20 retinal
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images with a 35-degree field of view and a 700
x 605-pixel resolution intended for blood vessel
segmentation. Ten of these photos display
typical retinal architecture. The CHASE DB1
dataset is another publicly available collection
for retinal blood vessel segmentation. It
comprises 28 high-resolution images (1280 x
960 pixels) captured with a 30-degree field of
view. With a 50-degree field of view (FOV), the
Indian DR Image Dataset (IDRiD) has 516
fundus images. Each image is meticulously
labeled to correspond to one of five DR stages.
The ROC dataset includes 100 retinal images
with a 45-degree field of view and sizes ranging
from 768 x 576 to 1389 x 1383 pixels. Only the
training set has ground-truth labels, even
though every image is labeled for
microaneurysms (MA) detection. Finally, the
DRz collection comprises 435 publicly available
retinal images with a resolution of 857 x 569
pixels. Of the 98 photos identified as needing
referral, each image includes annotations
indicating ~ whether  additional clinical
evaluation is necessary.

2. RELATED WORK

Using a Convolutional Neural Network (CNN),
the Kaggle dataset's Images were classified as
either normal or exhibiting DR symptoms. For
the present investigation, 1,000 photos were
taken from the dataset. Data augmentation
techniques were applied to improve the dataset
before importing the photos into the CNN
model. The images were resized to 224x224x3
pixels. Augmentation methods such as
rescaling, shearing, rotation, flipping, and
translation were employed to increase the
variety and volume of training data. The CNN
architecture consisted of eight convolutional
layers, four max-pooling layers, and two fully
connected layers. The final classification layer
used the SoftMax activation function to
categorize each image. This approach achieved
94.5% accuracy in classifying images as
referable or non-referable diabetic retinopathy
using the model's predictions [11]. Additionally,
the author suggested several pre-trained deep
learning models for extracting and classifying
multi-label features, specifically ResNet50,
ResNet152, and SqueezeNet1, all of which use
pre-trained CNN architectures. Experimental
results demonstrated accuracies of 93.67% for
ResNet50, 91.94% for SqueezeNet1, and
94.40% for ResNet152. These findings highlight
the models’ effectiveness and their potential for
integration into routine clinical practice,
supporting large-scale DR screening programs
[12]. When the author recommended utilizing
ResNet-3, a Gaussian filter, and image
normalization, the model achieved 85%
accuracy and 86% sensitivity in binary
classification [13]. Using the ResNet50 model,
the author achieved 92% sensitivity, 92.6%
accuracy, and 96.3% area under the receiver

operating characteristic (ROC) curve (AUC).
The Messidor dataset and the ISBI 2018 IDRiD
challenge dataset are two well-known
benchmark datasets used to assess the network.
The suggested method performed better than
competing approaches in these evaluations. In
the ISBI 2018 IDRiD competition, it performed
best, demonstrating its strong ability to
correctly classify photos of diabetic
retinopathy. Additionally, it outperformed
current techniques on the Messidor dataset,
demonstrating its resilience and potency in DR
detection. These findings, taken together,
highlight the model's excellence and
dependability in detecting DR from medical
photos, as confirmed by extensive testing on
recognized benchmark datasets [14]. Rautaray
et al. [18] proposed a method achieving 95.1%
accuracy in detecting macular edema via
transfer learning with ResNet18.
3.METHODOLOGY

The present study introduces the detection of
DR and DME using the Internet of Things (IoT)
and the Multi-Level Feature Extraction and
Classification (ML-FEC) architecture, a
revolutionary deep learning architecture. Using
IoT devices, the images were collected. Then,
the images were forwarded to the cloud
platform where the developed model is present.
As shown in Fig. 5, the developed model is
intended to identify and categorize DR lesions
in color fundus photographs (CFPs) that cover
all five stages of DR. Unlike traditional
classification methods that treat output labels
as mutually exclusive, the ML-FEC model
adopts a multi-label classification strategy,
enabling it to assign multiple relevant labels to
a single image. This approach acknowledges the
possibility of co-occurring lesions, enhancing
diagnostic accuracy. By incorporating advanced
deep learning methods in the framework of ML-
FEC, the model significantly improves the
precision and reliability of lesion detection and
stage classification, accounting for the complex
and varied presentations of DR. A distinctive
advantage of the proposed method is its
capacity to conduct a comprehensive analysis of
CFPs by detecting multiple DR lesion types
simultaneously,  facilitating a  deeper
understanding of disease progression and
supports more informed clinical decisions. The
annotation process was conducted under expert
oversight, with each image thoroughly reviewed
and labeled by a team of specialists. The labels
were documented in Excel spreadsheets and
include diagnostic categories ranging from “No
DR” to progressively severe stages, such as
“Mild NPDR,” “Moderate NPDR,” “Severe
NPDR,” “Early PDR,” and “High-risk PDR.”
Additionally, each image was annotated to
highlight specific DR-associated lesion types.
Figure 6 presents the systematic arrangement
of the dataset, along with sample retinal images
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that showcase distinct visual characteristics.
These examples are accompanied by their
respective classifications, as documented in the
corresponding Excel annotation files. Here, a
residual learning model has been proposed to
train deep neural networks, improving the
training of highly deep neural networks
developed by Microsoft's research and
development wing, called ResNet (Residual

classifcation report

Network). In a traditional CNN, adding new
layers can degrade performance due to
vanishing gradients. Figure 7 illustrates the
architectural implementation of Multi-Level
Feature Extraction and Classification (ML-
FEC). Here, from a single dataset, features are
extracted to classify both classes: DR (5 classes)
and DME (2 classes).
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Fig. 7 Multi-Level Feature Extraction and Classification (ML-FEC).

In non-residual learning, the neural network
learns directly from:

H(x) 1)
where x is the input, and H(x) is the output
mapping to be learned.

However, in residual learning, the neural
network learns:

H(x)=F(x)+x (2)
where F(x) is the residual function, and X is the
input.

The architecture of the proposed residual
learning is illustrated in Figure 8. Reusing a
model trained on one job to address a different
but related problem is known as transfer
learning, and it is a crucial machine learning
technique. Because of its strong performance
and computational efficiency, ResNet (Residual
Network) is one of the most widely used
architectures in image classification. In
particular, ResNet50 is a 50-layer deep
convolutional neural network. A 7x7
convolutional filter was used in its first layer.
The architecture was organized into four main
convolutional stages, each consisting of two
residual blocks. Each residual block had two
learnable weighted layers and a skip link that
adds the second layer's output straight to the
activation function (ReLU). If the dimensions
of the block’s input and output matched, an
identity shortcut was used. However, when they
differed, a convolutional pooling layer adjusted
the skip connection to match the shape.
ResNet50 accepts input images with
dimensions (224, 224, 3), where 3 denotes the
number of RGB color channels, 224 the width,
and 224 the height. The network ends with a
fully connected (FC) layer that feeds into a
sequential layer for final predictions. The use of
residual connections in this architecture helps
mitigate the vanishing gradient problem,
making it easier to train deeper networks
effectively. In this work, 2048 fully connected
layers were used, with a new layer of size 512
connected from 512 to 128, then to 5
corresponding to the number of diabetic
retinopathy classes. Similarly, for diabetic

macular edema, the network will be 2048-512,
512-128, and 128-2, corresponding to the sizes
of the edema classes. The architecture of the
present CNN model is illustrated in Figure 9.
3.1.Experimental Setup Dataset

The present study used the Messidor-2 dataset,
which includes a folder containing various
diabetic retinopathy (DR) images and an
accompanying CSV file with four columns. The
dataset includes 1,744 unique image identifiers.
These images were classified as 0: None (1,017
images),1: Mild DR (270 images),2: Moderate
DR (347 images), 3: Severe DR (75 images), and
4: Proliferative DR (PDR) (35 images). A
column for diabetic macular edema (DME)
grading, classified as: 0: No Referable DME
(1,503 images) and 1: Referable DME (151
images), as shown in Figure 10. Severe and
proliferative DR were represented by only a few
images, indicating an unbalanced dataset;
therefore, it should be balanced by applying
data augmentation.

3.2.Data Augmentation

Data augmentation plays a critical role,
particularly in scenarios where labeled data is
scarce. By generating modified versions of
existing images, it increases the effective
dataset size and enhances the model’s ability to
generalize to unseen data. In deep learning
applications, this method is widely utilized,
particularly when training convolutional neural
networks (CNNs) for tasks such as object
detection, image classification, and
segmentation. In this study, augmentation
methods applied to each image included
horizontal and vertical flipping, rotation,
grayscale conversion, Gaussian noise addition,
channel shuffling, and Contrast Limited
Adaptive Histogram Equalization (CLAHE). An
example of an augmented image is illustrated in
Figure 11. Since the task involves multilevel
classification for both retinopathy and edema,
the dataset was expanded and balanced using
data augmentation. After augmentation, the
distribution of retinopathy classes was as
follows: "PDR": 335 photographs, "None":
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distribution of different dataset classes before
and after DR augmentation is tabulated in
Table 1, and the distribution of different DME
classes is tabulated in Table 2.
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1,017 images, "Mild DR": 318 images,
"Moderate DR": 863 images, and "Severe DR":
777 images. The total number of retinopathy
images was 3310. Figure 12 shows the
distribution of the augmented dataset. The
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Fig. 9 Detailed Architecture of the Pretrained CNN Model for the Proposed Work.
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Fig. 10 Retinopathy and Edema.

Fig. 11 Augmented Sample Image.
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Fig. 12 Retinopathy and Edema after Augmentation.
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Table 1 Data Distribution of Retinopathy before and after Data Augmentation.

Augmentation None Mild DR Moderate DR Severe DR Proliferative DR Total
Before 1017 270 347 75 35 1744
After 1017 318 863 777 335 3310

Table 2 Data Distribution of Edema before and after Data Augmentation.

Augmentation No Referable DME Referable DME Total
Before 1593 151 1744
After 1911 1399 3310
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4.RESULTS

Python 3 was used to create the suggested
method utilizing the Google Colaboratory
platform. For the tests, a Windows 10 PC with
an Intel i3 processor and 8GB of RAM was
utilized. The Convolutional Neural Network
(CNN) model achieved 98.86% for Diabetic
Macular Edema (DME) and 86.04% for DR
during testing. The base model's accuracy is
92.46 for DME and 79.60 for DR. The
evaluation's confusion matrix and performance
matrix for DME are presented in Tables 4 and
5, respectively, which served as the basis for
determining critical performance metrics, such
as F-score, accuracy, and precision. Moreover,
the performance of the base model Resnet50
and the proposed model has been noted. The
results are summarized in Tables 6 and 7 for the
performance and confusion matrices of DR. For
model implementation, a transfer learning
approach using ResNet-50 was employed. The
training setup had a learning rate of 0.0003,
100 iterations, and a batch size of 32. To test the
performance of the proposed model, several
widely used assessment measures were

employed, including loss function, optimizer,
learning rate, learning rate decay, batch size,
epochs, and dropout, as shown in Table 3. The
method used to compute these metrics is

explained as follows:
N(TP)

Precision= NP ENGE) (1)
Recall= —2T%)__ (2)
N(TP)+N(FN)
_ precissionsrecall
F-score=2 x precission+recall (3)
Accuracy= N(TP)+N(TN) (4)

N(TP)+N(TN)+N(FP)+N(FN)
5.DISCUSSION

The discussion includes the cumulative counts
of true positives (N(TP)), false positives
(N(FP)), true negatives (N(TN)), and false
negatives (N(FN)), calculated separately for
each class. To evaluate the model’s overall
effectiveness, these values are averaged across
the two classes, providing a comprehensive
performance measure. The accuracy of the
performance analysis is described in the
following figures.

Table 3 Represents the Model Hyperparameters and Their Values.

Hyperparameter

Setting

Loss Function
Optimizer

Learning Rate

Learning Rate Decay
Batch Size

Total number of Batches
Epochs

Dropout Rate
Regularization

Early Stopping
Validation Set
Additional Layers
Kernel Size

Stride and padding, Pool Size

Categorical Cross-Entropy

Adam
3e-5

0.3
32
104
100
0.2
L2
No

15% of training samples

Yes, FC(1024), FC(512), FC(128)
7X7,3%x3,1x1

Stride 2, padding 3, 1, pool 3 x 3,2 x 2

Table 4 Confusion Matrix for Diabetic Macular Edema.

Model Proposed ResNet50 Base

Class Predicted Predicted

Actual Abnormal Normal Abnormal Normal
Abnormal 145 3 142 6
Normal 0 117 3 114

Table 5 Performance Matrix in Diabetic Macular Edema Detection and Classification.

Model Proposed ResNet50 Base
Class Precision Recall Fiscore Precision Recall Fiscore Support
Abnormal 1.00 0.98 0.99 0.98 0.96 0.97 148
Normal 0.97 1.00 0.99 0.95 0.97 0.96 117
macro avg 0.99 0.99 0.99 0.96 0.97 0.97 265
weighted avg 0.99 0.99 0.99 0.97 0.97 0.97 265
Accuracy 98.86% 96.60%
Table 6 Confusion Matrix for 5-class Diabetic Retinopathy for the Proposed Model.
. Predicted

Actual/Predicted None Mild DR Moderate DR Severe DR Proliferative DR

None 70 2 12 o o

Mild DR 2 22 4 o o
Actual Moderate DR 11 2 58 o o)

Severe DR 0 o 3 58 (o}

Proliferative DR 0 0 1 0 20
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Table 7 Performance Matrix of 5-Class Diabetic Retinopathy for the Proposed Model.

Class Precision Recall Fiscore Support Accuracy Weighted Fiscore
(%) (%)
None 0.843 0.833 0.838 84
Mild DR 0.846 0.786 0.815 28
Moderate DR 0.744 0.817 0.779 71
Severe DR 1.000 0.951 0.975 61
Proliferative DR 1.000 0.952 0.975 21
Macro average 0.887 0.868 0.876 265
Weighted average 0.865 0.860 0.862 265
86.04 86.2
Table 8 Confusion Matrix for 5-Class Diabetic Retinopathy for ResNet50 Base Model.
Actual/Predicted Predicted
None Mild DR Moderate DR Severe DR Proliferative DR
None 67 13 3 1 o
Mild DR 10 13 5 0 o)
Actual Moderate DR 11 4 53 3 0o
Severe DR o} o 2 59 0o
Proliferative DR 0 1 1 o) 19

Table 9 Performance Matrix of 5-Class Diabetic Retinopathy for ResNet50 Base Model.

Class Precision Recall Fiscore Support Accuracy Weighted
(%) Fiscore(%)
None 0.761 0.798 0.779 84
Mild DR 0.419 0.464 0.440 28
Moderate DR 0.828 0.746 0.785 71
Severe DR 0.937 0.967 0.952 61
Proliferative DR 1.000 0.905 0.950 21
Macro average 0.789 0.776 0.781 265
Weighted average 0.803 0.781 0.788 265
79.6 79.8
Table 10 Diabetic Edema Detection and Classification Using External Validation.
Author DataSet Classification Model Accuracy(%)
CNN, Xu et al. Kaggel CNN 94.50
Usman et al. Dataset ResNet 152 94.40
Alyoubi et al. Dataset Resnet 3 85.00
Li, Xiaomeng et al. IDRiD ResNet 50 92.60
Pravat et al. Messidor-2 Modified ResNet 18 95.10
ResNet50 Base Messidor-2(DME) ResNet50 92.46
Proposed Model Messidor-2(DME) Proposed CNN 98.86
ResNet50 Base Messidor-2(DR) ResNet50 79.60
Proposed Model Messidor-2(DR) Proposed CNN 86.04
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Fig. 11 Retinopathy and Edema Accuracy Graph.
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Fig. 12 Representing Train and Test Loss.

6.CONCLUSION

There is a revolutionary opportunity to improve
patient outcomes and the standard of care by
incorporating Internet of Things (IoT)
technologies into the treatment of DR.
Clinicians can enhance early diagnosis, ongoing
monitoring, and prompt medical intervention
for those at risk by employing IoT-enabled
devices such as wearable health monitors and
retinal imaging devices. Adoption of these
technologies, however, also brings up
important concerns, such as privacy protection,
data security, and system compatibility.
Coordinated efforts from patients, regulatory
agencies, technology  developers, and
healthcare professionals are needed to address
these issues. The successful implementation of
IoT solutions in clinical settings depends on
this kind of cooperation. In conclusion, the
effectiveness and accessibility of diabetic eye
care could be significantly improved by
integrating IoT with the treatment of DR.
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